
www.manaraa.com

Two distinct forms of functional lateralization in the
human brain
Stephen J. Gottsa,1, Hang Joon Job,1,2, Gregory L. Wallacea, Ziad S. Saadb, Robert W. Coxb, and Alex Martina

aSection on Cognitive Neuropsychology, Laboratory of Brain and Cognition, and bScientific and Statistical Computing Core, National Institute of Mental
Health, National Institutes of Health, Bethesda, MD 20892

Edited by Geoffrey K. Aguirre, University of Pennsylvania, Philadelphia, PA, and accepted by the Editorial Board July 25, 2013 (received for review
February 8, 2013)

The hemispheric lateralization of certain faculties in the human
brain has long been held to be beneficial for functioning. However,
quantitative relationships between the degree of lateralization in
particular brain regions and the level of functioning have yet to
be established. Here we demonstrate that two distinct forms of
functional lateralization are present in the left vs. the right cere-
bral hemisphere, with the left hemisphere showing a preference to
interact more exclusively with itself, particularly for cortical regions
involved in language and finemotor coordination. In contrast, right-
hemisphere cortical regions involved in visuospatial and attentional
processing interact in a more integrative fashion with both hemi-
spheres. The degree of lateralization present in these distinct
systems selectively predicted behavioral measures of verbal and
visuospatial ability, providing direct evidence that lateralization is
associated with enhanced cognitive ability.

specialization | asymmetry | intelligence | segregation | circuit

When considering the macroscopic functional organization
of the human brain, it is a basic fact that particular capaci-

ties such as language, visuospatial attention, and hand prefer-
ence in motor coordination are relatively lateralized to one of
the two cerebral hemispheres (1, 2). Neuropsychological and
neuroimaging studies have revealed a strong bias toward left-
hemisphere representation of language and fine motor control of
the hands (3, 4), with a well-documented association between
handedness and language lateralization that is most pronounced
in right-handed males (5). In contrast, visuospatial attentional
abilities are represented more strongly in the right hemisphere,
with right-sided brain damage being more likely to produce
hemispatial attentional neglect (6). Although the mechanisms
underlying functional lateralization are unknown, theoretical
proposals have appealed to the computational benefits of func-
tional specialization (7–9), with distinct functions and a division
of labor between the hemispheres that improves overall cognitive
ability and performance.
If functional lateralization is truly beneficial, a quantitative

relationship should exist between the strength of lateralization
and the level of cognitive ability. Indeed, relative hand skill, a
behavioral marker of the lateralization of fine motor control,
predicts verbal and nonverbal ability levels in both left- and right-
handed individuals, with deficits observed in individuals with
equal motor skills in the two hands (10). However, investigation
of the brain bases of these relationships has been limited by
several factors. A comprehensive evaluation of lateralization
over the entire cortex requires establishing homotopic locations
in the two hemispheres with high spatial precision, an alignment
that is complicated by the presence of variable gyral folding
patterns (11). Detailed hemispheric alignment methods by gyral
and sulcal landmarks on the unfolded cortical surface have only
recently been developed (12, 13). Previous neuroimaging studies
of functional lateralization have also considered only one basic
form of lateralization, quantified by comparing the overall
magnitude or extent of task-engaged brain activity (14, 15) or the
average strength of activity correlations in the left vs. the right

hemisphere (16, 17). A basic distinction that derives from the
separate literatures on language, motor, and visuospatial later-
alization is that the hemispheres differ qualitatively in their
within- and between-hemisphere interactions (reviewed in ref.
18). Left hemisphere representations of language and fine motor
control have been proposed to be more “focal,” permitting rapid
cortical interactions with shorter conduction delays (19–21),
whereas right-lateralized visuospatial attention mechanisms re-
quire a greater degree of interhemispheric integration due to the
bilateral representation of visual space (22). Nevertheless, the
proposed preferences of each hemisphere for unilateral vs. bi-
lateral interaction and how such preferences relate quantitatively
to particular cognitive abilities have yet to be examined.
In the current study, we used functional (f)MRI to examine

the hemispheric lateralization of time-varying cortico-cortical
interactions in 62 right-handed male participants, and we eval-
uated the quantitative relationship of lateralization to behavioral
measures of verbal and visuospatial ability. Rather than using
a particular cognitive task during fMRI that would engage only
a subset of relevant brain regions, we measured slow, sponta-
neous activity fluctuations present throughout the brain while
participants were at rest (reviewed in ref. 23). Measures of verbal
and visuospatial ability were then acquired outside the MRI
scanner in a separate behavioral testing session. The lateraliza-
tion of cortico-cortical interactions was determined by first
identifying homotopic locations in the left and right hemispheres
in terms of their anatomical positions relative to gyral and sulcal
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of function is associated with improved cognitive ability.
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landmarks on the unfolded cortical surface (Fig. 1A). Resting
brain activity at each location (36,002 nodes per hemisphere) was
correlated with the activity at every other location within and
across hemispheres, averaging these correlations separately per
location to estimate the strength of intra- and interhemispheric
cortical interactions (Fig. 1B and Fig. S1) (16, 24). Lateralization
was then quantified at homotopic cortical locations, using two
separate metrics that are differentially sensitive to a preference
for within-hemisphere interactions (“segregation”: within- minus
between-hemisphere correlation) vs. between-hemisphere inter-

actions (“integration”: within- plus between-hemisphere correla-
tion), permitting the evaluation of these preferences throughout
the entire cortex.

Results
Paired t tests applied separately to the segregation and inte-
gration metrics across participants [P < 0.005, corrected for
false discovery rate (FDR) to q < 0.025 for both] revealed several
large left-lateralized brain regions (Fig. 2 and Table S1). Although
a few smaller regions revealed significant left lateralization for the

Fig. 1. Comparing within- and between-hemisphere cortical interactions at homotopic locations. (A) Homotopic locations in the two hemispheres were
identified using relative position on the cortical surface from the centroids of FreeSurfer’s automatically parcellated regions, with 74 regions in each
hemisphere delimited by gyral and sulcul boundaries. (Upper Left) The locations of the centroids are shown on the cortical surfaces (small orange circles), and
the process of mapping the homotopic location (in blue) of a surface location i in the right hemisphere (in red) is graphically depicted. The homotopic location
is the surface node (of 36,002) in the opposite hemisphere with the most similar pattern of distances (geodesic) to the original node (see red and blue traces,
Lower Left). (Right) A complete map of homotopic locations for the standard surface model is shown, using color (see key for color map of locations). (B) After
identifying homotopic locations, the average within- and between-hemisphere correlation coefficient (ρ) was calculated using resting brain activity at each
node and compared at homotopic locations. (Top) Two homotopic seed nodes and their Blood-Oxygenation-Level-Dependent, or BOLD, time series, one in
the left hemisphere (LH) and one in the right (RH), along with their corresponding correlation maps in the LH and RH targets (color bar, Right). The correlation
maps in the target hemispheres are then averaged over the entire hemisphere (Middle) and stored back at the seed location, separately for the within- and
between-hemisphere correlations. (Bottom) The results of this process when repeating for all seed locations, applying Fisher’s z′-transform to yield normally
distributed values, and then averaging across all participants on the standard cortical surface (color bar, Right). The first letter in the labels “LL,” “LR,” “RR,”
and “RL” indicates a seed location in the left (L) or right (R) hemisphere, and the second letter indicates the target hemisphere (Fig. S1).
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integration metric, the left-lateralized locations were dominated
by the results for the segregation metric, reflecting a tendency for
stronger intrahemispheric correlations on the left, along with
weaker correlations from left to right (Fig. S1). These locations
included left-hemisphere language areas such as the left inferior
frontal gyrus; the posterior and middle superior temporal and
middle temporal gyri (25); brain regions involved in social pro-
cessing and communication such as the posterior cingulate,
medial frontal, and ventral temporal cortex including the fusi-
form gyrus (26); and portions of the left somatosensory and
motor cortex involved in motor coordination of the arms, hands,
and mouth (27); as well as medial occipital regions near the
calcarine sulcus. In contrast, virtually all right-lateralized regions
were observed solely with the integration metric, indicating
stronger intra- and interhemispheric correlations with locations
on the right. These consisted of brain regions involved in visuo-
spatial and attentional processing such as the right superior pari-
etal cortex, occipital cortex, and regions in ventral temporal
cortex, including the fusiform and parahippocampal gyri (22, 28).
When comparing the magnitudes of segregation and integration
statistically (paired t tests) for the regions shown in Fig. 2, greater
lateralization was detected for the segregation metric in the left
somatosensory/motor cortex [t= 3.44, n= 62, P < 0.001], the left
anterolateral temporal [t = 7.14, n = 62, P < 0.0001] and ventral
temporal cortex [t = 8.05, n = 62, P < 0.0001], and the left
posterior cingulate [t = 2.25, n = 62, P < 0.03] and medial
frontal cortex [t = 2.13, n = 62, P < 0.04], as well as the medial
occipital cortex superior to the calcarine sulcus [t = 6.25, n = 62,
P < 0.0001]. In contrast, greater lateralization for the integration
metric was observed for all of the right-hemisphere regions
shown in Fig. 2 that were identified with the integration metric
[t > 6.75, n = 62, P < 0.0001 for all]. These results establish the
presence of two qualitatively different forms of lateralization
that are associated with the two cerebral hemispheres, with the

left hemisphere exhibiting cortico-cortical interactions that are
constrained toward the left hemisphere and the right hemisphere
exhibiting interactions that are strongly bilateral.

Interrelationships of Lateralized Brain Regions. We next examined
the interrelationships of the 10 left-lateralized regions detected
with the segregation metric and the 8 right-lateralized regions
detected with the integration metric. Multidimensional scaling
and cluster analyses were used to identify sets or collections of
regions that had similar patterns of correlation with the others,
highlighting regions that are likely to belong to a common pro-
cessing circuit (Fig. 3). Given the large differences in surface
area of these regions, correlations of resting brain activity were
calculated among a fixed number of individual surface locations,
randomly sampled from the larger regions of interest. These
locations were then clustered with the K-means algorithm, and
this process was repeated 100 times to determine the average
likelihood that locations from any pair of regions were clustered
together. Estimates of the chance likelihood of clustering were
determined in Monte Carlo simulations by applying the same
clustering methods to random data (Methods and Fig. S3). The
average likelihood region-by-region matrix was then submitted to
multidimensional scaling (Fig. 3A) and a final round of clustering
to determine which regions have the most similar patterns of
correlation with respect to the other regions. A four-cluster so-
lution provided the best trade-off of variance explained to model
complexity (Fig. 3A, Inset), with clusters coded by color and la-
beled 1–4. The left-hemisphere language regions clustered to-
gether with those involved in other aspects of social processing
and communication (Fig. 3 B and C, shown in red for cluster 1);
the left somatosensory/motor regions involved in the coordination
of arm, hand, and mouth movements clustered together with
ventral temporal regions that are active when viewing, naming,
and thinking about manipulable objects (29) (outlined in green

Fig. 2. Correlations in resting brain activity are lateralized to the left vs. right hemispheres in a qualitatively distinct manner. (Left) Regions detected
with the “segregation” metric exhibited a relative shift toward stronger within- relative to across-hemisphere correlations. (Center) Regions detected
with the “integration” metric exhibited a shift toward stronger summed within- and across-hemisphere correlations. Metrics were compared at
homotopic locations in the left and right hemispheres. For each surface location (node), integration = LL + LR − (RR + RL) and segregation = LL − LR −
(RR − RL), with positive (negative) sign indicating left (right) lateralization. Label conventions are the same as in Fig. 1. See Fig. S2 for display of the
same results in more typical views on the folded cortical surface.
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for cluster 2); and the early visual and high-level visuospatial
regions formed two separate clusters, one composed of bilateral
medial occipital regions and the other of right-lateralized oc-
cipital, lateral ventral temporal, and parietal regions (outlined in
light and dark blue, respectively, for clusters 3 and 4). When
controlling for the chance level of clustering (Bonferroni cor-
rected to P < 0.05), all of the regions were significantly clustered
together in clusters 1 and 3 (shown as black circles in Fig. 3C),
and all of the regions in cluster 4 were significantly clustered
together with the exception of the right occipital pole region,
which was clustered significantly only with the right lateral occipi-
totemporal region. The left somatosensory/motor region in cluster
2 was clustered together significantly only with the left ventral
temporal region, failing to cluster significantly with the other two
regions in cluster 2. Taken together, these analyses indicate that
the 18 lateralized regions are not uniformly related to one another.
Rather, they are organized coarsely into a smaller number of
functionally related groups, with regions associated previously with
aspects of language and high-level visuospatial functions clustering
together in clusters 1 and 4, respectively.

Relationship of Lateralization to Verbal and Visuospatial Ability.
Having identified the large-scale organization of these lateral-
ized brain regions, it was possible to ask how well the magnitude
of lateralization in regions involved in language and visuospatial
processing could predict the corresponding cognitive abilities. A
subset of 44 participants was administered the Wechsler Ab-
breviated Scale of Intelligence (WASI), which includes vocabu-

lary and block design subtests shown to correlate more broadly
with language and visuospatial abilities, respectively (30–33).
Vocabulary and block design scores were found to be moderately
intercorrelated in this participant sample (r = 0.309, P < 0.05).
Therefore, we used standard and partial correlation methods to
separate out the unique portions of variation in each measure
that were associated with the two lateralization metrics. We also
constrained our analyses to the two sets of brain regions iden-
tified in the cluster analyses that were most directly relevant,
cluster 1 regions associated with language and social communi-
cation and cluster 4 regions associated with high-level visuo-
spatial processing. We first evaluated the relationship between
the magnitude of lateralization (segregation) in the six identified
cluster 1 regions and the vocabulary score. Of these six regions,
only the three regions that are most strongly associated with
language function (25) showed a significant positive correlation
between the segregation metric and the vocabulary score (left
inferior frontal gyrus, r = 0.303, n = 44, P < 0.05, two-tailed; left
lateral temporal cortex, including the superior, middle, and in-
ferior temporal gyri, r = 0.348, n = 44, P < 0.03; and the pos-
terior superior temporal gyrus, r = 0.376, n = 44, P < 0.02).
After partialling out the shared variation with block design
scores to establish selectivity to verbal ability, a positive partial
correlation with the vocabulary score remained for the left lat-
eral temporal region (partial r = 0.340, n = 44, P < 0.03) and the
left posterior superior temporal region (partial r = 0.400, n = 44,
P < 0.01) (Fig. 4, Left). Only the segregation metric was found to

Fig. 3. Activity correlations among lateralized brain regions form four function-related clusters. Locations were randomly sampled from each region, the
resulting correlation matrix was clustered, and the average likelihood that sampled locations were clustered together was calculated. (A) Agreement of
multidimensional scaling and K-means clustering of the average likelihood matrix, along with an “elbow” plot of variance left unexplained relative to the
number of clusters, indicate four distinct clusters (clusters 1–4), shown using color (red, green, and light and dark blue). (B) Viewing the anatomical locations
of clusters on the cortical surface reveals that the red regions (cluster 1) correspond to left-hemisphere regions involved in language and social communi-
cation; the green regions correspond to somatosensor, motor, and ventral temporal regions (cluster 2); the light blue regions correspond to medial occipital
regions engaged in early stages of vision (cluster 3); and the dark blue regions correspond to right-hemisphere regions involved in higher-level aspects of
visuospatial processing (cluster 4). (C) Good internal consistency of the four clusters is observed when viewing the average likelihood matrix used in A, sorted
by cluster membership. (Right) Color bar indicates the probability that randomly sampled locations from the regions cluster together over 100 iterations.
Labels corresponding to each of the 18 lateralized regions are provided next to the rows of the matrix in C. Solid black circles in the cells of the matrix in C
indicate that the cluster likelihood exceeds the level expected due to chance (Bonferroni corrected to P < 0.05 for the number of unique comparisons in the
18 × 18 matrix). Asterisks (*) next to the labels in C and placed in the interior of the regions in B highlight regions that exhibit behavioral correlations in Figs. 4
and 5. (Abbreviations: Ant, anterior; Dors, dorsal; IFG, inferior frontal gyrus; L, left; Lat, lateral; Med, medial; MFG, middle frontal gyrus; Occip, occipital;
Occipitotemp, occipitotemporal; Parahippoc, parahippocampal; Post, posterior; R, right; Somatosens, somatosensory; STG, superior temporal gyrus; Sup,
superior; Ventr, ventral.)
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be associated with the vocabulary score in these regions; corre-
lations and partial correlations calculated for the integration
metric using these same regions failed to yield significant results
(P > 0.2 for all). However, because correlations involving the
segregation metric intrinsically involved a comparison of homo-
topic locations in the left and right hemispheres, it was important
to examine whether the cortico-cortical interactions with the
left-hemisphere regions were more responsible for the results
than those with the right. Significant partial correlations with
the vocabulary score of left-with-left hemisphere minus left-
with-right hemisphere activity correlations (labeled as “LL-LR”

in Fig. 4, Right) were found for both the left lateral temporal
(partial r = 0.324, n = 44, P < 0.04) and the left posterior su-
perior temporal regions (partial r = 0.432, n = 44, P < 0.005).
No significant relationships were observed for the homotopic
right-hemisphere contrasts (“RR-RL” in Fig. 4, Right). In
summary, the magnitude of lateralization in two cluster 1
regions was selectively associated with better vocabulary scores,
but only when examining the lateralization metric appropriate
for these regions (i.e., segregation).
We similarly examined the magnitude of lateralization in the

five identified right-hemisphere cluster 4 regions that are most
strongly associated with high-level visuospatial processing and
correlated these values with block design scores, partialling out
common sources of variation with the vocabulary score. We
observed a significant partial correlation between the integration
metric and the block design score in a large region of ventral
temporal cortex, spanning portions of the fusiform gyrus, the
anterior transverse collateral sulcus, and the inferior temporal
gyrus (partial r = 0.398, n = 44, P < 0.01) (Fig. 5A, Left), along
with a nonsignificant trend in one of the two right superior pa-
rietal regions (partial r = 0.255, n = 44, P < 0.1). As with the
previous results, the partial correlation in right ventral temporal
cortex was not obtained when using the opposite lateralization
metric (segregation: P > 0.4), and it was driven by the right-
hemisphere portions of the integration metric (RR+RL: partial
r = 0.349, n = 44, P < 0.03) (Fig. 5A, Right), with no relationship
observed using the homotopic left-hemisphere region (LL+LR:
partial r = 0.067, n = 44, P > 0.6). However, multiple tests
were conducted on visuospatial regions (five in all), raising the
possibility that these results might be due to α-inflation from

multiple comparisons. We therefore examined independent
behavioral data from an additional subtest on the WASI that
also indexes visuospatial processing abilities, along with more
abstract reasoning abilities: the matrix reasoning subtest (Meth-
ods). As with the results for block design, the right ventral
temporal region showed a significant partial correlation between
the integration metric and the matrix reasoning score after
partialling out the vocabulary score (partial r = 0.355, n = 44,
P < 0.02) (Fig. 5B, Upper Left), along with a significant partial
correlation in the right parietal region that previously showed
a trend-level association for the block design score (partial r =
0.353, n = 44, P < 0.03) (Fig. 5B, Lower Left). Results were not
obtained in either region when using the segregation metric (P >
0.4 for all), and they were similarly driven by the right-hemi-
sphere portions of the integration metric in the ventral temporal
region (matrix reasoning, RR+RL, partial r = 0.432, n = 44, P <
0.005; LL+LR, P > 0.19) (Fig. 5B, Upper Right), as well as in
the right parietal region (matrix reasoning, RR+RL, partial r =
0.333, n = 44, P < 0.03; LL+LR, P > 0.7) (Fig. 5B, Lower Right),
replicating the overall pattern observed with block design scores.
The common pattern observed across this series of region-of-

interest (ROI) tests was highly replicable: (i) significant partial
correlation with the metric used to identify the lateralized re-
gion, (ii) the lack of a significant partial correlation with the
opposite metric (P > 0.1), (iii) a significant partial correlation
with the same-sided component of the full laterality metric, and
(iv) the lack of a significant partial correlation with the opposite-
sided component metric (P > 0.1). These observations strongly
suggest that the observed behavioral correlations are not due to
chance. Although straightforward calculation of the joint likeli-
hood of all of these events for each ROI is not possible (the
comparisons are not orthogonal), it is possible to estimate their
joint likelihood when using random permutations of the same
data (34). The process involves randomly repairing each partic-
ipant’s laterality measures with another participant’s behavioral
scores, recalculating all of the same partial correlations on the
randomized data, and then repeating this process many times
(20,000 iterations used in the current study; see Methods for full
details), counting the number of times that the joint events occur
due to chance. When applying this procedure to the current data,
the joint pattern of events was found to be exceedingly unlikely

Fig. 4. Magnitude of lateralization in lateral tem-
poral regions predicts verbal ability levels. The Seg-
regation metric in the left lateral temporal cortex
(Upper) is correlated with the vocabulary score after
partialling the block design score across participants.
The scatterplot for the full segregation metric
[(LL−LR)−(RR−RL)] is shown to the left, adjusting
both axes for the block design score. The same scat-
terplot is shown to the right, broken down by the
corresponding left-hemisphere (LL−LR) and right-
hemisphere components (RR−RL) of the full metric.
(Lower) Analogous results are shown for the pos-
terior temporal region. Label conventions are the
same as for Fig. 1. Compare with whole-brain partial
correlation results for individual surface locations
shown in Fig. S4.

Gotts et al. PNAS | Published online August 19, 2013 | E3439

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
27

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302581110/-/DCSupplemental/pnas.201302581SI.pdf?targetid=nameddest=SF4


www.manaraa.com

for each ROI reported in Figs. 4 and 5 (left lateral temporal
ROI, P < 0.0027; left posterior superior temporal ROI, P <
0.0007; right ventral temporal ROI for block design, P < 0.0016;
right ventral temporal ROI for matrix reasoning, P < 0.0016;
right superior parietal ROI for matrix reasoning, P < 0.0024).
Although no single test would survive Bonferroni correction for
the number of regions tested in these analyses (16 total: 6 for
cluster 1 ROIs and 5 for cluster 4 ROIs, each tested twice), the
joint likelihood of the full pattern of results for each ROI did
survive correction (P < 0.05/16 = 0.003125), establishing that the
observed patterns of results are not due to chance.

Lateralization in Language-Related Regions Predicts Lateralization
in Motor-Related Regions but Is Distinct from Lateralization in
Visuospatial Regions. We have demonstrated that for multiple
brain regions involved in the domains of both language and
visuospatial processing, the magnitude of lateralization is posi-
tively associated with the level of cognitive ability. However, the
presence of significant partial correlations does not rule out the
possibility of at least a portion of shared variation between verbal
and visuospatial domains. Indeed, the “functional crowding”
hypothesis of brain lateralization holds that as one function
becomes lateralized, such as fine motor control or language, it
forces the lateralization of other functions as all of them com-
pete for cortical representation (35). Recent fMRI evidence

(36) suggests that for left-handed participants with and without
atypical speech lateralization, measures of verbal and visuospa-
tial lateralization are indeed interrelated (15). However, the
same issue has not been evaluated in a whole-brain manner
across verbal, visuospatial, and motor domains in more typical
right-handed participants. Accordingly, we examined the extent
to which it is possible to predict the magnitude of lateralization
in one functional domain, using the magnitude derived from
another. For these purposes, we focused not only on regions in
clusters 1 and 4, but also on regions in cluster 2 related to motor
coordination (the red, dark blue, and green clusters in Fig. 3).
We controlled for the potential concern that global correlations
across the entire spatial extent of the brain could bias the in-
terrelatedness of these lateralization measures by partialling
out the level of whole-brain correlation present for each partici-
pant from the lateralization metrics in each region (Methods).
Averaging the resulting adjusted lateralization metrics across
regions within each cluster, the magnitude of lateralization in
cluster 1 regions strongly predicted the magnitude of lateraliza-
tion in cluster 2 regions across participants (r = 0.606, n = 62,
P < 0.0001). In contrast, neither the cluster 1 nor the cluster 2
regions predicted the magnitude of lateralization in cluster
4 regions associated with high-level visuospatial processing (r =
0.073, n = 62, P > 0.5 and r = 0.077, n = 62, P > 0.5, respec-
tively). Both of these correlations were near zero, and they were

Fig. 5. Magnitude of lateralization in ventral tem-
poral and superior parietal regions predicts visuo-
spatial ability levels. (A) The Integration metric in the
right ventral temporal cortex is correlated with block
design scores after partialling vocabulary scores
across participants. (Left and Right) The adjusted
scatterplot for the full Integration metric is shown
[(RR + RL) − (LL + LR)] (Left) and broken down by
right- and left-hemisphere components (Right). Simi-
lar results at a trend level (P < 0.1) were obtained for
the right superior parietal region (main text). (B) The
integration metric in the right ventral temporal and
superior parietal regions is correlated with matrix
reasoning scores after partialling vocabulary scores
across participants. Scatterplot conventions are as
in A. Label conventions are the same as for Fig. 1.
Compare with whole-brain partial correlation results
for individual surface locations shown in Fig. S4.
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also significantly below the level of correlation observed between
lateralization magnitudes in clusters 1 and 2 (using Fisher’s
z-transform to test for significant differences in two correlation
coefficients: r = 0.606 vs. 0.073, n = 62, P < 0.001; r = 0.606 vs.
0.077, n= 62, P < 0.001). In contrast to the recent results of Cai
et al. (36), these results fail to support the functional crowding
hypothesis for typical right-handed participants. Instead, they
provide evidence for independent mechanisms of functional
lateralization in the left vs. right hemispheres (see ref. 37 for
similar evidence from transcranial Doppler imaging).

Discussion
Using two different metrics to detect the hemispheric laterali-
zation of cortico-cortical interactions in resting brain activity, we
have demonstrated that the left hemisphere has a greater pref-
erence for within-hemisphere interactions whereas the right
hemisphere has interactions that are more strongly bilateral. At
a macroscopic scale, this is broadly consistent with proposals that
hold that cortical representations are more focal in the left
hemisphere and more diffuse in the right hemisphere (21). We
have also demonstrated that hemispheric lateralization of verbal
and visuospatial function is quantitatively beneficial for these
functions when examining the appropriate lateralization metrics,
at least within the population of right-handed males on which
much of the laterality literature has been based (38). Although
we were unable in the current study to evaluate the quantitative
relationship between fine motor skill and the magnitude of lat-
eralization in the left somatosensory and motor cortex, our
results afford the strong prediction that performance in speeded
manual and/or pronunciation tasks should be directly related to
the segregation metric calculated for this part of the brain.
Cluster analyses identified four sets of lateralized brain regions

that interact differentially with one another. In cluster 1, classic
language regions in the left inferior frontal and lateral temporal
cortex were grouped together along with regions in the same
hemisphere on the medial wall that are associated with social
communication and comprehension (16, 25, 26, 39, 40). In
cluster 2, somatosensory and motor regions responsible for the
control of the arms, hands, and mouth were significantly grouped
with a left medial ventral temporal region (Fig. 3C and Fig. S5)
that is more active when performing cognitive tasks with ma-
nipulable objects than with stimuli from animate categories (29).
This finding is consistent with recent anatomical evidence of
a distinct pathway from parietal to ventromedial temporal cortex
that may be involved in visually guided reaching and grasping of
objects (41). The further involvement of the portion of the motor
cortex responsible for controlling the mouth and tongue for
speech suggests a larger designation of brain regions involved in
fine motor coordination (see Fig. S6 for comparison of locali-
zation in prior studies; e.g., refs. 27, 42). Although language and
motor coordination of the limbs are clearly distinct functions, the
magnitude of lateralization measured from the corresponding
brain regions was found to be tightly interrelated across partic-
ipants, consistent with the well-known relationship between
handedness and language lateralization (5, 38). The fact that
these left-hemisphere regions were all identified with the seg-
regation metric, indicating interactions that are predominantly
restricted to the left hemisphere, concords well with previous
proposals that more spatially restricted, focal cortical repre-
sentations could be beneficial for systems that require temporally
rapid interactions in the service of sequential behaviors (19–21).
The remaining two clusters of brain regions (clusters 3 and 4)

were associated with aspects of visuospatial function. Medial
occipital areas involved in early vision formed one cluster, and
higher-level occipital, ventral temporal, and superior parietal
areas involved in more complex aspects visuospatial processing
and attention formed the other. Although some studies have
found evidence supporting an interdependence of lateralization

in visuospatial and language processing (e.g., ref. 36), the mag-
nitude of lateralization in right-hemisphere visuospatial brain
regions in our large sample of right-handed male participants
was found to be independent of lateralization magnitude in left-
hemisphere language and motor regions. This finding suggests
that separate genetic and/or neural mechanisms are responsible
for driving lateralization in the two hemispheres. The differences
between the results of ref. 36 and our current study may reflect
differences in the participant samples (e.g., the inclusion of left-
handed participants) or perhaps in the methods used to assess
lateralization (cortico-cortical interactions measured in resting
brain activity vs. the magnitude of task-evoked responses in
particular brain regions). Indeed, it will be important for future
studies to examine the agreement of laterality measures taken
during the performance of explicit tasks vs. those taken at rest, as
in the current study. It is possible that some aspects of our cur-
rent results are invariant across task conditions, whereas others
may vary in a more context-sensitive manner. Task-evoked
responses and patterns of covariation of resting-brain activity are
both thought to depend on the underlying structure of synaptic
connections (43, 44), but particular tasks may engage certain
synaptic connections differentially. We would expect task con-
ditions that critically rely on regions discovered using our resting-
state methods to yield comparable lateralization results and
correspondences with behavior. Nevertheless, it is noteworthy
that measures of lateralized cortical interactions taken during
rest can be associated with individual variability in behavioral
measures that were acquired in a separate session, implying that
an ample portion of this variability is context invariant. In prin-
ciple, the presence of these sorts of brain–behavior relationships
when using resting brain activity should afford comparative studies
throughout development, as well as across different species, that
would otherwise be difficult or impossible to conduct due to a lack
of task competence in certain populations (45, 46).
Although our current results do not highlight interrelation-

ships across verbal and visuospatial cognitive domains, the
abundance of data from different methods points to there being
a substantial portion of variation that is shared across these
domains. For example, Crow et al. (10) examined interrelation-
ships between behavioral measures of verbal and nonverbal
ability (e.g., detecting patterns in a series of visual shapes) in
more than 12,000 right- vs. left-handed participants. Strong di-
rect relationships were observed between verbal and nonverbal
performance across participants, as well as a dependence of
performance in each domain on relative hand skill. Similarly, the
literature on “g,” a single factor of general intelligence, com-
monly finds robust intercorrelations of test performance across
verbal and nonverbal subtests of the Wechsler scales and other
Intelligence Quotient (IQ) tests (see ref. 47 for review). In our
own participant sample, the correlation between vocabulary and
block design scores was moderately positive and significant (r =
0.309, P < 0.05). In the context of this larger literature, our
results do not imply a complete independence of verbal and
nonverbal abilities, but rather a partial independence, with
substantial portions of both shared and distinct variability (33,
48–50).
Our results are broadly consistent with computational theo-

ries of functional specialization that hold that information pro-
cessing is more effective and efficient when larger functions can
be decomposed into smaller independent processes, reducing
functional interference (7, 8). Hemispheric lateralization can be
thought of as a special case of functional specialization, but other
cases, such as the division of labor in the visual system between
space and form (41, 51) or category selectivity in occipito-
temporal brain regions (29), may ultimately be found to follow
similar considerations. In this regard, it is important to empha-
size that although qualitatively different patterns of lateralized
cortical interactions in the left and right hemispheres were ob-
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served in the current study, these differences were nevertheless
graded in nature, varying quantitatively over participants. We
interpret this variation as being consistent with a developmental
bias in synaptic connectivity and/or plasticity mechanisms that
varies qualitatively by hemisphere and is optimized through ex-
perience (9). On this view, functions with a strong reliance on
rapid, sequential interactions, such as speech production and
comprehension (52) and fine motor control, may come to be
represented in the left hemisphere by virtue of the bias toward
intrahemispheric interactions with shorter average synaptic delays.
In contrast, visuospatial processing that depends more prominently
on information representation in space rather than in time may
benefit more from the spatial conjunction of many synaptic
inputs from both hemispheres, better matching the bias of the
right hemisphere. This view is not only consistent with the data and
proposal of Semmes for focal representations in the left hemi-
sphere and more diffuse representations in the right hemisphere
(21), but also consistent with a recent magnetoencephalography
(MEG) study by Gazzaniga and coworkers showing stronger
bilateral dynamical interactions when presenting words and pro-
nounceable nonwords to the right hemisphere than when pre-
senting these stimuli to the left hemisphere (53). With further
developmental studies from infants through adulthood, we should
be able to clarify at what point hemispheric differences in cortico-
cortical interactions emerge, as well as to what extent these dif-
ferences predict the acquisition of lateralized cognitive abilities.

Methods
Participants. Sixty-two right-handed males (mean age = 21.2 y, SD = 5.1 y)
with no history of psychiatric or neurological disorders participated in the
experiment. All had normal or corrected-to-normal vision. Handedness for a
variety of activities, including writing, was confirmed through the adminis-
tration of the Physical and Neurological Examination for Soft Signs (54).
Informed assent and consent were obtained from all participants and/or
their parent/guardian (participants younger than 18). The experiment was
approved by the Institutional Review Board of the National Institutes
of Health.

Behavioral Methods. The WASI (55) was administered to a subset of 44 of the
62 participants in a testing session that was separate from the MRI scanning
session (all within 1 y of the scanning session). Individual t-scores (normative
mean = 50, SD = 10) were available for each individual on four subtests, two
contributing to estimates of verbal ability (Verbal IQ) (vocabulary, similari-
ties) and two contributing to estimates of nonverbal ability (Performance IQ)
(block design, matrix reasoning). From these, vocabulary and block design
subtests were selected a priori for two main reasons: (i) Vocabulary and
block design subtests have a long history of validity (56) and strong prior and
selective associations with verbal/language abilities and visuospatial abilities,
respectively (30–33, 47, 57, 58), and (ii ) similarities and matrix reasoning
both require more abstract reasoning, with the expectation that variation in
scores will be driven relatively more by variation in domain-general execu-
tive functioning rather than the selective, lateralized abilities that are the
focus of the current study. Furthermore, neuropsychological studies have
established that left- vs. right-hemisphere damage has dissociable effects on
vocabulary and block design scores (33), with these two subtests (along with
digit span) also exhibiting the most robust brain–behavior correlations of
those Wechsler subtests that have been examined to date in neuroimaging
studies (57–59).

fMRI Imaging Methods. fMRI data were collected using a GE 3 Tesla whole-
body MRI scanner at the National Institutes of Health Clinical Center NMR
Research Facility, using standard imaging procedures. For each participant,
a high-resolution T1-weighted anatomical image (magnetization-prepared
rapid acquisition with gradient echo, or MPRAGE) was obtained (124 axial
slices, 1.2-mm slice thickness, field of view = 24 cm, 224 × 224 acquisition
matrix). Spontaneous, slowly fluctuating brain activity was measured during
fMRI, using a gradient-echo echo-planar imaging (EPI) series with whole-brain
coverage while participants maintained fixation on a central cross and were
instructed to lie still and rest quietly (repetition time, TR = 3,500 ms, echo
time, TE = 27 ms, flip angle = 90°, 42 axial contiguous interleaved slices per
volume, 3.0-mm slice thickness, field of view, FOV = 22 cm, 128 × 128 ac-
quisition matrix, single-voxel volume = 1.7 × 1.7 × 3.0 mm). Each resting scan

lasted 8 min 10 s for a total of 140 consecutive whole-brain volumes. All EPI
data were evaluated for sharp head motion artifacts, passing the sudden
motion detection of the Analysis of Functional NeuroImages, or AFNI, pro-
gram “afni_proc.py” at the threshold level 0.3 mm for the Euclidean L2
norm of motion displacement during each TR interval (60). Independent
measures of nuisance physiological variables (cardiac and respiration) were
recorded during the resting scan for later removal. A GE eight-channel
send–receive head coil was used for all scans, with a sensitivity encoding
for fast MRI, or SENSE, factor of 2 used to reduce gradient coil heating
during the session.

fMRI Preprocessing. AFNI cross-modal registration software was used to align
anatomical images for each participant to the fifth volume of the resting EPI
time series. Aligned anatomical images were then processedwith FreeSurfer’s
automated pipeline for generating cortical surface models and whole brain
segmentation (61). The following procedures were carried out using AFNI’s
suite of programs (62). For each participant, standard-mesh surfaces of
36,002 nodes per hemisphere were created with AFNI Surface Mapper, or
SUMA. A similar process was applied to the N27 template brain, allowing the
display of the results onto the template’s surfaces (63, 64). Preprocessing of
the resting EPI time series was carried out using the basic anatomy-based
image correction, or ANATICOR, method (65). The first four pre–steady-state
TRs were removed. Large transients were transformed to lie between 2.5
and 4 SD from a smoothed version of the time series (AFNI’s 3dDespike).
Time series volumes were registered to the first volume of the truncated set
and corrected for slice-time acquisition. Linear regression was used to remove
motion, cardiac, respiratory, and hardware-induced signal transients. Respi-
ration and aliased cardiac signals were created from the recorded physiolog-
ical traces, using the retrospective image correction, or RETROICOR, approach
(66). Additionally, five respiration-volume per-time (RVT) regressors (67) were
added to model slow fluctuations in participant breathing patterns. Motion
effects were modeled by the six head motion estimates, and hardware arti-
facts were modeled with one regressor for eroded local white matter signals
and one averaged signal from eroded lateral ventricle masks. With the ex-
ception of the RVT regressors (which already include signals interpolated at
five different time delays), 1-TR delayed versions of the nuisance variables
were also included to allow for delayed effects of noise sources (68). The
denoised, volume-based residual time series (length = 136 TRs) were then
mapped onto cortical surfaces, using an average kernel with 10 sampling
points evenly distributed along a line centered between smooth white matter
and pial surfaces and extending 80% of the thickness between corresponding
nodes on the two surfaces. The mapped time series were smoothed with a
heat kernel that resulted in an 8 mm full-width-at-half-maximum noise
spatial correlation structure on the white matter surface (12).

Finding Homotopic Locations Through Landmark-Based Correspondence. Homo-
topic locations in the two hemispheres were identified relative to gyral and
sulcal landmarks on the cortical surface as in Jo et al. (12). We assigned to each
cortical node a 74-dimensional label vector containing the geodesic distance
along the surface from that node to each centroid of the 74 cortical parcel-
lations provided by FreeSurfer (e.g., central sulcus, inferior frontal gyrus, etc.)
to redefine locations on the cortical surfaces instead of the Cartesian coor-
dinate system ðx; y; zÞ,

~n ≡ Æδ1; δ2;⋯; δ74æ;

where ~n is the label vector to define the position of a node in the hemi-
sphere, and δj is the geodesic distance (46) between the node and the centroid
of the jth FreeSurfer cortical parcellation, which is calculated on the stan-
dardized smooth white matter surfaces by SUMA’s SurfDist program. The
homotopic location of a cortical node can be defined as the node in the op-
posite hemisphere whose label vector is most similar to (i.e., has the largest
Pearson correlation with) the original node’s label vector (Fig. 1A).

Measuring Lateralized Cortical Interactions Using Within- and Across-Hemisphere
Average Correlation. As in previous studies of “functional connectivity” using
resting brain activity (23), the strength of cortical interactions between two
locations on the cortical surface was estimated as the correlation (Pearson’s r) of
the residual EPI time series at those locations. Taking each individual surface
node as a “seed,” the correlation of the corresponding resting time series was
calculated with every other surface node in both hemispheres as “targets”.
These correlations were then averaged within and across hemisphere for each
seed node, estimating the average strength of intra- and interhemispheric
interactions with the seed location (Fig. 1B) (16, 24). After applying Fisher’s
z-transform to these averaged correlations to yield normally distributed values,
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within- and across-hemisphere contrasts were calculated for each participant
between homotopic locations in the left and right hemispheres to estimate two
different forms of functional lateralization. Segregation, the tendency for
greater within- relative to across-hemisphere interactions, was calculated as

Segregation = LL − LR − (RR − RL):

The first letter in these labels denotes the seed hemisphere and the second
denotes the target hemisphere (e.g., “LR” means the average correlation of
a seed node in the left hemisphere with all target surface nodes in the right
hemisphere). A large positive value of LL−LR would indicate that the aver-
age correlation within the left hemisphere was stronger than the average
correlation from the left to the right hemisphere. A large positive value of
the full segregation metric would indicate that the bias for stronger within-
hemisphere interactions is stronger for the left than for the right hemi-
sphere. In contrast, a large negative value would indicate that the bias for
within-hemisphere interactions is stronger for the right. In principle, the in-
terpretation of this metric would be complicated by the presence of negative
correlations or negative contrasts. However, closer examination of the group-
average values (shown in Fig. S1) reveals exclusively positive correlations for
LL, LR, RR, and RL throughout the brain (69). The segregation metric and its
component left- and right-sided contrasts (LL−LR and RR−RL), also shown in
Fig. S1, further demonstrate that the above interpretation is not complicated
by ambiguities resulting from negative correlations/contrasts.

The second form of lateralization, referred to as integration, is calculated
as a sum of average intra- and interhemispheric correlations, compared at
homotopic left- and right-hemisphere nodes:

Integration = LL+ LR − (RR+RL):

Large positive values of the integration metric imply stronger bilateral in-
teractions with left-hemisphere nodes, whereas large negative values imply
stronger bilateral interactions with the right. Note that this metric is similar
to the single “laterality” index used in Liu et al. (16).

Multidimensional Scaling and Cluster Analyses. Having identified 10 left-lat-
eralized regions with the segregation metric and 8 right-lateralized regions
with the integration metric (Table S1), we analyzed the interrelationships
among the regions, using a two-step approach. In the first step, the large
differences in surface area of the different regions were handled by ran-
domly sampling the same number of nodes (n = 20) from each region. On
a given iteration, the nodes were randomly sampled and the corresponding
time series were entered into a large matrix (20 nodes from 18 regions =
360 nodes × 136 TRs). The all-to-all node correlation matrix (360 × 360)
was calculated and then submitted to cluster analyses, using the K-means
algorithm (kmeans in Matlab’s Statistics Toolbox, with the default Squared
Euclidean Distance metric) (22). In K-means cluster analysis, a matrix is par-
titioned into groups or “clusters” of columns such that the variance ex-
plained by the clustering (i.e., the between-clusters sum-of-squares relative
to the total sum-of-squares) is optimized (70). For choices of K ranging from
2 to 10, we tabulated the number of times that nodes sampled from one
of the 18 regions were clustered together with nodes from each of the other
18 regions, and this process was repeated for a total of 100 iterations. Av-
eraging the results across the 100 iterations, we calculated the likelihood
that nodes sampled from any pair of regions were clustered together, given
the choice of K (Fig. S3). “Elbow” plots of the variance left unexplained for
each of the 100 iterations with increasing K (calculated as the within-cluster
sum-of-squares over the relevant columns of correlation values) were combined
with a measure of stability of the resulting likelihood matrix (a measure of sum-
squared distance between adjacent values of K, calculated over the likelihood
values in the 18 × 18 region matrix). A choice of K = 5 in this first step resulted in
good variance explained and little subsequent change in the average likelihood
matrix; the final clustering results (below) did not depend strongly on this
particular choice (results are identical for K = 6). Chance clustering levels
were determined for K = 5, using random time series (each time point drawn
from a Gaussian normal distribution with μ = 0 and σ = 1) and Monte Carlo
methods. For each iteration of the Monte Carlo simulations (total of 20,000
iterations), (i) a set of 360 random time series (representing 18 regions × 20
nodes) of the same length as the fMRI time series (136 TRs) was correlated
all-to-all to yield a 360 × 360 correlation matrix, (ii) this matrix was clustered
with K-means using K = 5, (iii) the number of times each combination of the
18 “regions” was clustered together was tabulated, and (iv) steps i–iii were
repeated 100 times to match the sampling process performed on the actual
data. The distribution of chance likelihood values across the 20,000 iterations
was then compared against the values for the actual data. Controlling for a
Bonferroni-corrected chance level (P < 0.05 divided by the number of unique

comparisons in the 18 × 18 matrix or P = 0.05/171 = 0.0002924 for a two-
tailed test) meant that any actual clustering likelihood values above the
99.99th percentile in the chance distributions (likelihood threshold of 0.432)
would be corrected for chance anywhere in the 18 × 18 matrix. Black circles
in particular cells of the 18 × 18 matrix in Fig. 3C indicate significant clustering
likelihood values by these methods.

In the second step of the cluster analysis approach, the average likelihood
matrix was submitted to a final round of K-means clustering (shown in Fig. 3)
and multidimensional scaling (MDS) after conversion to a dissimilarity matrix
(using Matlab’s pdist function and then mdscale in the Statistics Toolbox
with default options for parametric MDS). MDS is an analysis method
that takes points in a high-dimensional space (18 dimensions, in this case)
and rerepresents their interrelationships as accurately as possible in a lower-
dimensional space that can be more easily visualized (71). A four-cluster
solution provided the best trade-off of variance explained to model com-
plexity according to a simple elbow criterion (the point of maximum con-
cavity along the curve of number of clusters, K, vs. variance unexplained; see
ref. 72 and Fig. 3A, Inset). Results using a five-cluster solution were identical
to those using the four-cluster solution with the exception that the large left
somatosensory/motor region split off on its own from the other regions
outlined in green in Fig. 3. The four K-means clusters were viewed simul-
taneously in the plane of the MDS plot, using color (red, green, and light and
dark blue) to verify the basic agreement of the two separate analysis
methods (see ref. 24 for a similar application). Fig. S5 provides detailed in-
formation about the membership of regions in the four clusters, shown
along with the region-by-region likelihood matrix sorted by cluster.

Permutation Tests for Correlations with Verbal and Visuospatial Ability. The
joint likelihood of the family of effects observed for each of the regions
reported in Figs. 4 and 5 was estimated by permutation test (34). Four partial
correlation tests were carried out for each of these regions: (test 1) partial
correlation of vocabulary scores with the full segregation metric for cluster
1 ROIs, partialling block design scores (or block design/matrix reasoning with
integration, removing vocabulary for cluster 4 ROIs); (test 2) partial corre-
lation of these same behavioral scores with the opposite lateralization
metric; (test 3) partial correlation for the same-sided component metric (e.g.,
LL−LR for the segregation metric in a left-hemisphere ROI); and (test 4)
partial correlation for the opposite-sided component metric (e.g., RR−RL for
the segregation metric in a left-hemisphere ROI). The patterns observed in
the actual data were (i) significant effects for tests 1 and 3, and (ii) non-
significant effects for tests 2 and 4 (i.e., P > 0.1). To estimate the chance
likelihood of these four events for each region, we randomly repaired each
participant’s laterality measures with a different participant’s behavioral
scores (20,000 times), recalculating all of the same partial correlations and
tabulating the number of times that the randomized data showed effects in
tests 1 and 3 at significance levels matching the weakest one observed for
that region in the actual data and exhibiting P values in tests 2 and 4 greater
than or equal to 0.1. We further required that the partial correlation coef-
ficients in tests 1 and 3 exhibited the same sign, as all of the significant
partial r-values for the actual data were positive. Significance of the esti-
mated joint likelihoods was then found by comparing the percentage of the
chance events observed against a Bonferroni-corrected value of P = 0.05/16
(the number of regions tested in the actual data: six cluster 1 ROIs and five
cluster 4 ROIs tested twice each).

Interrelationships of Lateralization in Language, Motor, and Visuospatial Regions:
Controlling for Whole-Brain Correlations. Whole-brain correlation was measured
for each participant by calculating the average correlation of each node’s
time series with that at every other node on the cortical surface in both
hemispheres (using AFNI’s function 3dTcorrMap) and then averaging fur-
ther over these node-wise average correlations to arrive at a single global
correlation value. This global correlation value was then removed using
linear regression from the participant-level lateralization metrics at each
node in the 18 lateralized regions that were detected with either segre-
gation or integration metrics. Despite the potential concern that whole-
brain correlation could bias these analyses, results were virtually identical
with or without the removal of this variable.
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